AC6652E www.lab 2103 6

使用手册

- PCI 总线开关量板
- 16路隔离输入
- 16 路隔离输出,输出共地,可以直接输出电压

wwlab 2013/6

在开始使用前请仔细阅读下面说明

检查

打开包装请查验如下:

- ♦ AC6652E卡一个
- ◆ 手册及光盘。
- ◆ DB37插头一套。

安装

关掉 PC 机电源,将 AC6652E 插入主机的任何一个 PCI 插槽中并将外部的输入、输出线连好。如果主机有多套 AC 系列 PCI 插卡,请每次只安装一个插卡。软件启动安装请查看第3章说明。

保修

本产品自售出之日起一年内,用户遵守储存、运输和使用要求,而产品质量不合要求,凭保修单免费维修。因违反操 作规定和要求而造成损坏的,需缴纳器件费和维修费及相应的运输费用,如果板卡有明显烧毁、烧糊情况原则上不予维修。 如果板卡开箱测试有问题,可以免费维修(限购买板卡10天内)。

目录

<i>—</i> ,	AC6652E 说明
	1.1 AC6652E 板简介
	1.2 主要特点、性能
	1.3 原理说明
<u> </u>	安装与连接
	2.1 安装
	2.2 连接器插座定义
	2.3 配套端子板
	2.4 常用信号的连接、处理10
三、	软件开发12
	3.1 软件说明与安装12
	3.1.1 软件说明12
	3.1.2 驱动安装13
	3.2 接口函数说明
	3.3 VC 程序编程说明17
	3.4 VB 程序编程说明
四、	附录
	4.1 AC6652E 示意图20
	4.2 10译码地址表

一、AC6652E 说明

1.1 AC6652E 板简介

AC6652E是一款低价格通用光电隔离I/0板,具有16路输入、16路输出。采用PCI总线支持即插即用、无需地址跳线。采用大规模可编程门阵列设计,提高可靠性。

AC6652E的输入支持5-24伏输入,输出采用共地模式,可以直接输出电压(需外接电源,输出高电压为外接电源电压),输出驱动电流大于100毫安,可以方便的驱动小型继电器、LED等负载。

相关产品:

相关产品:

AC6652: PCI,隔离16DI/16D0。 AC6652D: PCI,隔离16DI/16D0,输入共阳、输出可以直接输出电压。 AC6652C: PCI,隔离16DI/16D0,4路高速隔离计时器 AC6654: PCI,隔离32DI/32D0。 AC6655: PCI,隔离64DI/32D0。 MP441: USB总线隔离16入、16出 AP142: PC104总线隔离24入、165出 AC4161: ISA总线隔离16入、16出。

配套端子板

- AC142 DB37螺丝端子接线
- AC240 16路继电器板

1.2 主要特点、性能

- 16路隔离输入、16路隔离输出。
- 最大隔离电压大于: 500伏(绝缘电阻大于100兆欧)。
- 输入电压范围: 5-24伏(电流约: 2-12毫安)。
- 响应时间

输入性能:

电平变化	相应时间(uS)
高−〉低	25
低->高	25

注: 以上测试为典型数值。

■ 16路输出为共地输出,直接输出电压

性能:

- 1. 最大输出电流: >100毫安/路, 耐压: 30伏
- 2. 三极管输出压降≤2V。输出电压 〉 (外部电压-2)
- 3. 输出接地电阻: 4.7K

说明:

1. 建议用户,如果要求某个通道输出工作速度比较快,建议调整这个通道的负载电流大于5mA,以保证足够高的输出频率(在输出与输出地线之间额外连接一个电阻)。

- ◆ 当+5V供电时,适用负载阻抗小于0.8K;
- ◆ 当+12V供电时,适用负载阻抗小于2K;
- ◆ 当+24V供电时,适用负载阻抗小于5K。

2. 当外部电压为+5V供电时,边缘上升和下降时间、最大输出频率对应关系如下表。

	上升时间(uS)	下降时间(uS)	最大输出频率(kHz)
外部为空载时	<10	<100	<8
负载电流>5mA	<2	<20	<20

- 16路输入通道,性能:
 - 1. 输入电压: 5-24伏。
 - 2. 输入电流: 2-11毫安。
 - 3. 输入最大频率: 10KHz。
 - 4. 输入光电耦合器: TLP281-4
 - 5. 输入限流电阻: 2K欧姆/功率: 0.5W。
- PCI总线,符合PCI V2.1标准
- AC6652E占用256个I/0选通空间(自动分配)。

1.3 原理说明

AC6652E采用 CH系列 PCI 接口芯片及门阵列作为主控芯片。

输入结构

输入部分:输入原理见图一。如果输入电压经过电阻 RI 到光藕的输入,经隔离输出到门阵列芯片的输入。输入电流为: Iin=(Vin-1.2)/2(mA),如果输入电流过大,可以在输入额外串接一个限流电阻,但必须保证输入电流大于2毫安。

当外部输入一个有效高电平时,用户在对应位读入为"1"。当输入悬空时,读入的对应位为"0"。

输出结构

输出信号地与其他信号地相隔离。

二、安装与连接

2.1 安装

关掉 PC 机电源,将 AC6652E 插入主机的任何一个 PCI 插槽中并将外部的输入、输出线连好。如果主机有多套 AC 系列 PCI 插卡,请逐个安装(详细参考软件部分说明)。请注意"输出端禁止对正电源短路,否则会烧毁输出级"。

注:

以下设: PI0-PI15 表示 16 个输入通道的 0-15 号。 P00-P015 表示 16 个输出通道的 0-15 号。

2.2 连接器插座定义

DB37

1. P00-P015: 对应输出通道 0-15 号。

- 2. PIO-PI15: 对应输入通道 0-15 号。
- 3. 脚 9、28: 对应输入地线。
- 4. 脚 18、37: 对应输出地线。
- 5. 脚 19: 输出外接电源(5-24V, 输出电压=(电源电压-1)(V))。

2.3 配套端子板

■ AC142 接线板

可以配接 AC142 端子板

AC142:

- ◆ 40 路螺丝端子,支持 32 路接线。
- ♦ DB37 或 40 脚扁平电缆插座。

■ AC240:

16 路继电器板

2.4 常用信号的连接、处理

♦ 输出驱动继电器

上图示意输出驱动继电器的原理。电源地线连接 AC6652E 的地线。继电器的线圈二端反向并联一个二极管用来吸收线圈的反向电压。如果继电器触点驱动感性负载,需要在开关触点二端并联一个压敏电阻,以吸收触点开关时产生的火花。

■ 输出驱动 LED 或固态继电器

图中的 R 为限流电阻,保护 LED 不过流,LED 可以等同为固态继电器的"+、-"二端。

■ 输入交流信号

高压交流信号通过变压器降压到 5-12 伏,并通过 1N4001 二极管整流输出到 AC6652E 的输入上。

三、软件开发

本章介绍驱动的安装、动态连接库函数使用方法以及针对 AC6652E 的软件开发指导。请用户在编程前,仔细阅读本手册,了解相关信息。

3.1 软件说明与安装

3.1.1 软件说明

AC6652E附带光盘中,提供如下内容:

- 1. 说明书。
- 2. 驱动程序, 支持win98/win2000/winXP操作系统。
- 3. Visual C++、Visual Basic编程实例。
- 4. AC6652E测试程序。

注:由于win98、winNT微软已经不提供支持,不建议使用。AC6652E卡的驱动不支持win NT。

- 在光盘的\PCI\AC6652E\DRIVER目录中包含: AC6652.inf、 AC6652.sys 、AC6652.dll、AC6652.LIB 4个文件。
 - ♦ AC6652. inf 驱动安装文件。
 - ♦ AC6652.sys 驱动程序。
 - ◆ AC6652.dl1 动态连接库。
 - ♦ AC6652.LIB VC的库文件。
- 在光盘的\PCI\AC6652E\VC目录中包含:
 - ◆ VC的编程例子。
 - ♦ 编程需要的include文件。
- 在光盘的\PCI\AC6652E\VB目录中包含:
 - ◆ VB的编程例子。
 - ◆ VB编程需要的声明模块程序。
- 在光盘的\PCI\AC6652E\MFC目录中包含: MFC的编程例子

■ AC6652.EXE:测试程序。

3.1.2 驱动安装

安装方法:

- 关闭计算机电源,将AC6652E插入一个PCI插槽。如果有多个AC6652E插卡,请每一次安装一个AC6652E插卡。第一次安装的插卡的设备号为 "0",第二次安装的插卡的设备号为 "1",依次类推。
- 2. 打开计算机电源,启动Windows。
- 3. Windows将会显示找到新硬件,可按找到新硬件向导进行下一步。
- 4. 选择搜索适用我的设备的驱动程序,下一步。
- 5. 选择驱动所在目录,进行安装。(目录: \PCI\AC6652E\ driver)
- 6. 按找到新硬件向导的提示进行下一步。
- 7. Windows将显示完成添加/删除硬件向导,单击完成即可完成安装过程。
- 8. 完成后如果安装第二个AC6652E,请关闭计算机电源,插入第二块AC6652E插卡,重复上述安装过程。

安装后,程序自动将 AC6652. dl1 动态连接库程序拷贝到 windows 系统的 system32 目录中,用户用也可以自己将 DLL 拷贝到当前工作目录中。

驱动安装完毕后在\控制面板\系统\设备管理中可以找到 AC6652E 卡, 查看"属性→资源",如果出现 AC6652E 的 IO 地址,表明驱动安装正确。

- 安装完毕后将在设备管理器中出现一个其他设备(其他设备是问号,不表示设备有问题,只是表示系统不知道AC6652E 板卡是何种设备),
- 如果需要更新设备驱动,请在硬件设备管理目录下选择 "AC6652E卡→按鼠标右键选择属性→选择驱动程序→选择重新 安装驱动程序"。
- 当 Visual C++/Visual Basic 例程从 CD-ROM 复制到硬盘时,属性仍将保持为只读属性,这将影响用户调试程序。请 将属性改为文档属性,这样就可以进行正常的编译、调试工作了。

3.2 接口函数说明

本卡以DLL-动态链接库的方式封装了用户在win98/win2000/winXP环境下编程需要的函数。动态链接库可以被windows 环境下的多数编程语言调用,用户只要正确使用调用格式就能正确调用函数。本手册只提供了VC、VB的调用例子,有关其

他语言调用的方法,用户可以参考其他书籍或直接在网上查找。

□ 打开一个 AC6652E 设备

函数: HANDLE AC6652_OpenDevice(long DeviceNum)

参数:

◆ DeviceNum: 入口参数, AC6652E 的设备号, =0、1、2..., 依次表示第一个、第二个.... AC6652E 插卡。设备号的定义 参考驱动安装部分。

◆ 函数返回值:卡的操作句柄。

注: VC 中如果句柄不等于 INVALID_HANDLE_VALUE,表示正确。VB 中如果句柄不等于&HFFFFFFF,正确。

□ 关闭一个 AC6652E 设备

函数: long AC6652_CloseDevice(HANDLE hHandle)

功能:关闭以 hHandle 打开的 AC6652E 卡。

参数:

◆ hHandle: 入口参数,卡的操作句柄。

- ◆ 函数返回数值: 0: 成功 / -1: 失败。
- □ 开关量输入

功能: 读入 0-15 号口中一个 8 位口输入数据。

注: AC6652E 的 16 路输入分为: PORT0、PORT1--2个8位接口。

PORTO: 对应输入通道 0-7。

PORT1: 对应输入通道 8-15。

函数: long AC6652_DI (HANDLE hHandle, long ionum)

♦ hHandle: 入口参数,卡的操作句柄。

♦ ionum: 入口参数,=0、1分别选择读入 PORT0、PORT1。

◆ 函数返回:出口参数,返回读入的数据,低8位有效。8位数据(D7-D0)分别对应端口的8个I0线7-0号。

□ 开关量输出

功能:设置 PORTO、PORT1, 2个8位口中的一个口的输出数据。

注:16路输出分为 PORT0、PORT1 共 2 个 8 位输出口,如下:
PORT0:对应输出通道 0-7 号。
PORT1:对应输出通道 8-15 号。

函数: long AC6652_DO (HANDLE hHandle, long ionum, long iodata)

- ♦ hHandle: 入口参数,卡的操作句柄。
- ♦ ionum: 入口参数,=0、1分别选择输出口 PORT0、PORT1。

- ◆ iodata: 入口函数,针对 ionum 号输出的数据,0-255。低 8 位有效。8 位数据(D7-D0)分别对应端口的 8 个 I0 线 7-0 号。
- ◆ 函数返回:出口参数,=0操作成功,其他失败。

3.3 VC 程序编程说明

编程前,请将 AC6652. dl1 动态连接库程序拷贝到用户当前目录中或 windows 系统的 system32 目录中。将 AC6652. lib 及 AC6652_lib.h 程序拷贝到用户当前目录中。(需要的文件在 VC 目录中)

VC 编程的基本流程:

 利用显式调用加载函数。AC6652.lib、AC6652_lib.h文件必须在当前工作目录中。方法,程序的开始处加入如下语句: #pragma comment(lib, "AC6652.lib")
 #include"AC6652_lib.h"

详细可以参考 VC 目录中的程序, AC6652_LIB.h 文件包含了需要的函数的声明过程。

- 2. 利用 AC6652_OpenDevice 函数获得板卡的操作句柄。
- 3. 在退出程序时必须执行如下操作:利用 AC6652_CloseDevice 函数关闭句柄。

例:

//获得所有 AC6652E 的操作函数
#pragma comment(lib, "AC6652.lib")
#include"AC6652_lib.h"

HANDLE hDevice=INVALID_HANDLE_VALUE; //硬件操作句柄

Main()
{

//获得 AC6652E 硬件操作句柄 hDevice=AC6652_0penDevice(0); //创建设备驱动句柄,设备号为 0

..... //用户程序

//退出

AC6652_CloseDevice(hDevice); //关闭操作句柄

```
}
```

详细可以参考光盘上的 AC6652E 的 VC 目录下的例子。

在编程时必须注意,硬件操作句柄 HANDLE 必须为全局变量或必须传递给有相应硬件操作的函数。硬件句柄只要在程序 启动时打开一次即可,不需要每次打开或关闭。

3.4 VB 程序编程说明

编程前,请将 AC6652. dll 动态连接库程序拷贝到用户当前目录中或 windows 系统的 system32 目录中。

VB 编程的基本流程:

- 在工程菜单中选择添加模块,将 AC6652. bas 模块添加进来(该模块在光盘中\pci\AC6652E\vb 目录中,应用时将文件 拷贝到当前工作目录下),此文件为所有函数的声明文件。
- 2. 在模块中定义一个硬件操作句柄,为一个 long 属性的全局变量,这样可以被用户程序中的所有 form 调用(例: AC6652. bas 中声明的句柄 hd6652)。
- 3. 利用 AC6652_OpenDevice 函数获得板卡的操作句柄。

在退出程序时必须执行如下操作:

利用 AC6652_CloseDevice 函数关闭句柄。

注: AC6652. bas 模块已经包含了所有必要的 AC6652E 函数的声明语句。

```
例:
```

DIM hd6652 as long Private Sub Form_Load() DIM I as long Hd6652 = AC6652_OpenDevice(0)'打开设备0号,获得驱动句柄Ý其他操作 End Sub Private Sub Form_Unload(Cancel As Integer)

AC6652_CloseDriver hd6652 '关闭驱动 End Sub

有关用户其他方面的应用请参考光盘中的例程。 注: VB 中如果设备操作句柄不等于: &HFFFFFFF 为有效句柄。

- 1. VID:4348H
- 2. PID:5049H
- 3. SUBSYSID:66520001H

偏移地址分配(IOBASEO):

偏移地址	读操作(RD)	写操作(WR)
A0-A3		

0 Н	DI PORTO	DO PORTO
1 H	DI PORT1	DO PORT1